mishin05 (mishin05) wrote,
mishin05
mishin05

Categories:

Изображение "семейства функций" на графике функции на конкретном примере. Часть вторая



В первой части этой статьи я показал на двух примерах не совсем понятный, лично мне, момент: авторы двух учебников, скриншоты которых я показал, сознательно вводят в заблуждение своих читателей, приводя в выкладываемых ими формулах выражения от различных функций, но ставя, при этом, между ними знаки равенства. Или они не понимают, что творят?

Они мошенники, шизофреники или просто ботаники? Они не понимают, что любой "чих" в математическом аналитическом выражении (формуле) меняет его смысл?!

В учебнике Кудрявцева повествуется о функции одного аргумента, потом, после двоеточия, приводится пример функции двух аргументов, но формулы этой функции не приводится. Посмотрите, в тексте, содержащем пример функции двух аргументов, нет выражения, содержащего: "f(x,z)".

В справочнике Выгодского стоит формула, в которой приводится пример аннигиляции значков дифференциала и интеграла для функции одного аргумента, потом в эту формулу вставлено математическое выражение, состоящее из суммы двух букв, соединенное с двух сторон знаками "равно". Фальшзвено. Люди, писавшие это - мошенники, математики или ботаники?!

Что означает словосочетание: "произвольное постоянное" слагаемое? Математически это зквивалент "параметра". То есть, величины, значения которой не зависят от величины, рассматриваемой в роли переменной. Для чего эти интеллектуальные "извращения"? Кого хотят обдурить? Для чего?!

То есть, сумму двух величин: "u+v" математически можно рассмотреть либо при изменении обеих величин, меняющих свои значения независиммо друг от друга, либо при некоей функциональной зависимости друг от друга, либо как сумму переменной и параметра, либо в качестве суммы двух параметров.

В зависимости от способов решения поставленной задачи применяются различные математические инструменты. Обращаю внимание: сами величины остаются теми же самыми во всех случаях, но для исследования действий над ними во всех приведенных случаях используются различные математические инструменты: матанализ, алгебра и т.д.

На этом я прерву теоретическую часть своего повествования. Так как "у нас здесь не учебник". ))

Нас будет интересовать вот эта выдержка из учебника Кудрявцева:



Как Вы уже догадались, это и есть основная теорема математического анализа. Вернее, его современной версии... ))) Предыдущая версия немного отличалась от современной. Последующая, я надеюсь, будет снова отличаться от современной и походить на предыдущую. Так как предыдущая составлялась Лейбницем, Эйлером и другими математиками, но потом была изменена ботаниками, которые сочли необходимым заменить понятие переменной на понятие множества в применении к понятию функции. То есть два различных математических объекта: непрерывную величину и дискретный набор параметров они не различают. Хотя Рене Декарт этому различению посвятил часть работы: "Правила для руководства ума". Привожу скриншот:



Но ботаники не "ботают" различия между множествами и величинами и между мерой и порядком. Ну не предназаначен их образ мышления к математике! Для них "семейство функций" это то же самое что и "семейство лисьих" или, допустим, "семейство крестоцветных"...

"Функция двух аргументов при различных значениях одного из аргументов? Нет не знаю..." Ну, ботаники же! )))))))))))))))

Затем "специалисты умственного труда" решили любую геометрическую произвольную линию рассматривать как набор участков от различных "графиков функций", называя момент совпадения участков словом "дифференцируемость". Не понимая, что ПОЧТИ все графики функций состоят из топологических точек, имеющих различные значения, а геометрические линии состоят из одинаковых точек. После этого математика превратилась в шизофреническую химеру. Где внешне изображают одно, а по сути - другое... )))

Когда-то на математическом форуме "dxdy" я задал вопрос модератору: "А если обезьяна на листе бумаге накалякает линию, Вы тоже будете считать ее графиком функции и сможете изучить?" "Конечно" - ответил он. "Но, ведь обезьяна не составляла таблицы, не использовала никакой функциональной зависимости в виде набора математических действий между двумя переменными, то есть не было никакого закона в распределении набора точек, которыми она "составляла" свой "график функции", как она способна своими неразумными действиями так Вас интеллектуально напрячь?!" Я удивился тандему двух мозгов, похоже, имеющих схожее интеллектуальное наполнение. После этого меня стали банить.

Зато я осознал клиническую подоплеку современной версии матанализа...)))

Ладно, опять многабукав. Но я, все-таки, в этой части покажу один из моментов с использованием которого детям в школе корежат мозг. Объяснение в следующих частях. Если будут отклики в виде комментариев.

Итак, я думаю, все видели подобный мошеннический трюк:



А вот информация к размышлению на основе схем из "Структурного анализа":



Объяснения потом. Пока только информация для выведения мозга из "спящего режима".

Продолжение следует.




Subscribe

  • Post a new comment

    Error

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

    When you submit the form an invisible reCAPTCHA check will be performed.
    You must follow the Privacy Policy and Google Terms of use.
  • 2 comments